POLICY DINNER THE CIRCULAR ECONOMY Pathway for Pursuing 1.5°C

11 May 2017 | 6:30pm - 9:00pm Bonn Marriott World Conference Hotel

Hosted by: The Stanley Foundation

Presented by: Jelmer Hoogzaad Shifting Paradigms

CIRCLE ECONOMY Matthieu Bardout Circle Economy

CONTENT

The circular economy The circular economy Its mitigation impact Circular mitigation examples Transformational change Discussion SHIFTING PARADIGMS supports the transition to a low-carbon, circular economy

CIRCLE ECONOMY is dedicated to the practical and scalable implementation of the circular economy

Our current economic paradigm follows a **'take-make-waste'** model

In a **circular economy**, materials and resources are effectively used to their **fullest potential**

A circular economy includes both material & systemic elements

Prioritise resources

Preserve & extend what's

Rethink

Collaborate

Climate change is a **major global concern**, with temperatures steadily rising toward the 1.5°C and 2.0°C target

Global temperature change (1850–2016)

The latest UNEP 'emissions gap' report shows that current policies are insufficient to meet climate targets

The circular economy can make a **major** contribution to mitigating climate change

THE SITUATION

Under a business as usual scenario. the global temperature by 2100 will be more than 4°C above pre-industrial levels

THE END GOAL

To limit temperature rise to 1.5°C, we need to cut greenhouse gas emissions from 65 to 39 billion tonnes CO,e per annum by 2030

THE SOLUTION

Current national commitments achieve about half of the required emissions cuts. Circular economy may fill about half of the remaining gap

We extract over **80 billion tonnes** of materials per year to meet the functional needs of society...

(draft analysis)

Sources: Circle Economy team analysis based on Exiobase (2011); Tukker et al., EXIOPOL - Development and illustrative analyses of a detailed global MR EE SUT/IOT (2013) Economic Systems Research, 25 (1), pp. 50-70.; Wood et al., Global sustainability accounting-developing EXIOBASE for multi-regional footprint analysis (2015) Sustainability (Switzerland), 7 (1), pp. 138-163.

... which relies on **emission-intensive** resources and processes...

50.6 Gt CO²e from extraction to end-of-life

(draft analysis)

Sources: Circle Economy team analysis based on Exiobase (2011); Tukker et al., EXIOPOL - Development and illustrative analyses of a detailed global MR EE SUT/IOT (2013) Economic Systems Research, 25 (1), pp. 50-70.; Wood et al., Global sustainability accounting-developing EXIOBASE for multi-regional footprint analysis (2015) Sustainability (Switzerland), 7 (1), pp. 138-163.

... yet only 7% of materials are reused and recycled by the global economy

Sources: Circle Economy team analysis based on Exiobase (2011); Tukker et al., EXIOPOL - Development and illustrative analyses of a detailed global MR EE SUT/IOT (2013) Economic Systems Research, 25 (1), pp. 50-70.; Wood et al., Global sustainability accounting-developing EXIOBASE for multi-regional footprint analysis (2015) Sustainability (Switzerland), 7 (1), pp. 138-163.

Cross Laminated Timber is a promising **low-carbon substitute** for reinforced concrete

The cement industry accounts for 5% of global CO² emissions

Concrete is the 2nd most consumed substance after water

This is a nine story building using 950m³ of wood. Its carbon footprint compared to concrete and steel is -1080 tCO²e

Biodigestion of manure, organic waste and human excretion can produce biogas and fertiliser

€150 million - planned investments in biodigesters in the Dutch dairy sector

10% - share of Dutch emissions from agriculture (mostly methane from cows)

1MWh - energy generated by demonstration plant in 20 days

The technology is also widely applicable in developing countries.

The Kumasi industrial cluster in Ghana is an example of large-scale automotive remanufacturing

Employing an estimated 200,000 workers Designed their own car with **recycled car parts** Drawing interest from car manufacturers

Finding systematic mitigation options requires mapping **the full metabolism** of a jurisdiction, industry or industrial cluster

The metabolism of Albania, mapping:

Food Water Energy Tourists 0 5 25 50 km

It offers Lao PDR an alternative development perspective which steps away from devastating resource extraction and its short-term rents

Initiative with UNDP

Mapping stocks and flows of:

- Agriculture and forestry
- Energy
- Metals
- Tourism

Opportunities

- Aquaculture in hydropower reservoirs
- Cross laminated timber
- Vehicle remanufacturing
- Nutrients recovery

Source: J.A.hoogzaad and others (unpublished draft), Circular economy strategies for Lao PDR

Circular economy opportunities to mitigate climate change are overlooked and underfinanced

~67%

share of global climate finance going to energy efficiency and renewables

67%

global energy use related to material management

13%

share of global emissions related to agriculture

1%

share of global climate finance directed to land-use

15%

share of global emissions related to construction

Sources:

UNFCCC, 2016 Biennial Assessment and Overview of Climate Finance Flows. J.A.hoogzaad and others (unpublished draft), Circular economy strategies for Lao PDR http://www.wri.org/blog/2014/05/everything-you-need-know-about-agricultural-emissions B. Bajželj, J.M. Allwood and J.M. Cullen, "Designing Climate Change Mitigation Plans That Add Up", *Environmental Science & Technology*, 47(14): 8062-8069, July 2013 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797518

The circular economy changes the **scope of mitigation action**

	Renewables, energy efficiency and reduced deforestation	Low-carbon materials and dematerialisation	
	Optimising existing assets/installations	Building an efficient metabolisms and systems	
	Plant, city or country (scope 1 and 2 emissions)	Supply chain or cross-border Interaction (scope 3 emissions)	
n	Products	Services	То
	Carbon tax	Extraction tax	
	Territorial emissions	Consumption-based emissions (30% tied to international trade)	
	Article 6 inspired by CDM and offsetting	Article 6 targeting cross-border trade of carbon- intensive products and materials	

Fron

Way forward

Policy links between the Circular Economy and Climate Change

Within the UNFCCC, Circular Economy could be taken up in a variety of ways:

- Technical Experts Meetings offer venues to raise circular economy strategies with mitigation potential
- Policy and business champions could make the way forward tangible with existing examples
- The Innovation Task Force within the Technology Executive Committee could look at circular economy solutions
- At COP 23, with Fiji as the host, SIDS can call for mobilising circular economy solutions to their waste management challenges
- Circular economy strategies also fit well with a number of <u>sustainable</u> development goals, including those on climate change; sustainable consumption and production; inclusive, safe, resilient and <u>sustainable</u> <u>settlements</u>; resilient infrastructure, sustainable industrialisation and innovation and even reduced poverty through job creation

Impact Modelling a Deep Dive into Complementarity within the Circular Economy

- Develop further understanding of upstream emissions, particularly for minerals and ores.
- Detailed assessment of the <u>mitigation impact</u> of circular economy strategies within and across sectors, including positive and negative feedback loops, like in <u>transport</u>, <u>agriculture</u>, <u>construction</u> and <u>healthquare</u>.
- Complementary assessment of resource scarcity with a periodic table or elemental approach, considering also rare earth use.
- Circular economy strategies and policies can strengthen existing mitigation pathways, adding a resource availability perspective to the development and scaling up of renewable energy.
- Circular economy offers economically attractive opportunities to lower greenhouse gas emissions also in heavy industry.

Climate Finance Current Contributions and Opportunities for Circular Economy Projects

- Integrate circular economy considerations into the work of the Green Climate Fund, G-20's Green Finance Study Group, V20, World Bank, World Economic Forum, International Monetary Fund.
- Leverage financing for circular economy initiatives with institutional investors, public investment, finance groups, and business investment, using the guidance from the circular financing team at Circle Economy.
- Assess where most of the commercially viable circulate economy mitigation options lie.

UNFCCC Negotiations The Circular Economy within the Architecture of the Paris Agreement

Transparency framework: include metrics which reveal mitigation options in reducing the carbon footprint of products and materials which are traded internationally (scope 3 emissions, or consumption-based accounting)

Nationally Determined Contributions: While developing the architecture of the Paris Agreement, there is need for a discussion on cross-border corrections and the emissions embedded into the international trade of products and materials. The NDCs contain a diverse range of pledged targets and actions and have a voluntary character. This is an opportunity for countries to include national policies which have mitigation potential outside national borders.

Article 6 on international cooperation: should also incentivise initiatives which decrease emissions outside national borders, for example by encouraging substitution of imported carbon intensive materials.

shifting paradigms

Contact

Jelmer HOOGZAAD Shifting Paradigms jelmer@shiftingparadigms.nl +31 6 41 47 01 91 www.shiftingparadigms.nl Matthieu BARDOUT Circle Economy matthieu@circle-economy.com +31 6 57 70 59 56 www.circle-economy.com

Annexes

A growing body of evidence suggests **the circular economy is a promising pathway** to reduce emissions

Geographical Scope	Circular Economy strategies investigated	GHG emission reduction	Author and year of publication
World	Mobility, food waste, food chains, passive houses, urban planning, and renewable energies	17 000 MtCO2eq. in 2030	Ellen MacArthur Foundation, 2015
Europe	Recycling	176 MtCO2eq. (policy targets) 278 MtCO2eq. (tech. potential)	BIO for European Commission, 2011
Europe	Waste Directives Impact Assessment	62 MtCO2eq.	European Commission SWD(2014) 208
France	Packaging recycling	2.1 MtCO2eq. in 2013	CDC Climat for Eco-Emballages, 2015
Finland, France, The Netherlands, Spain and Sweden	Material efficiency in general	Carbon emissions reduced in all countries combined between 3 and 10%, ~75 MtCO2eq. by 2030	Club of Rome (2015) The Circular Economy and Benefits for Society

Agrifood: in the dairy sector, different circular economy transition pathways are possible:

Mobility: changing regulations and consumer demands are driving the transition to the circular economy

<section-header>

Report: http://www.circle-economy.com/case/o n-the-road-to-the-circular-car Healthcare: circular economy strategies can lead to significant cost savings while reducing material use

Construction: the circular economy offers interesting solutions to reduce the impact of the construction sector

Continuing to operate in the linear economy relates to various **risks for businesses and investors**

LINEAR ECONOMY BEHAVIOURS

	Utilise non-renewable and/or toxic resources	Prioritise sales of new products	Monopolise knowledge and IP	Maintain status quo
Market risks	-Scarcity of primary resources -Volatility of resource prices	-Scarcity of primary resources -Volatility of resource prices	-Limited opportunities to expand to new markets with trade partners	-Scarcity of primary resources -Volatility of resource prices
Operational risks	-Threats to employee health & safety -Product recalls due to supply chain issues	Inability to adapt to new value chain models	-Increased supply chain inefficiencies and miscommunication	-Inability to adapt to new supply chains -Threats from automated production lines
Business risks	-Inability to meet changing consumer demands -Threats from decreasing cost of renewables	-Inability to meet changing consumer demands -Decreasing margins from commoditisation	- Inability to meet changing consumer demands - Threats from disruptive new technologies	-Inability to meet changing consumer demands -Threats from disruptive new technologies
Legal risks	-Lawsuits from consumers -Fines due to regulatory violations -More stringent climate change legislation	-Lawsuits from consumers -Requirements for extended producer responsibility	-Anti-trust regulations -Patent disputes	-Changing environmental regulations
Reputational risks	-Negative brand image and perception	-Inability to connect with new generation of consumers	-Negative brand image and perception	-Inability to connect with new generation of consumers

8.1 % of Dutch **jobs** are currently connected to the circular economy

The circular economy offers promising solutions to contribute to the UN **Sustainable Development Goals**

Overview of **material flows (1)**, associated **emissions (2)** and **waste generation (3)**

(draft analysis)

